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Abstract 

The concept of the McPherson number of a simple connected graph G on 

n vertices denoted by ( ),Gϒ  is introduced. The recursive concept, called 

the McPherson recursion, is a series of vertex explosions such that on the 

first iteration a vertex ( )GVv ∈  explodes to arc (directed edges) to all 

vertices ( )GVu ∈  for which the edge ( ),GEvu ∉  to obtain the mixed 

graph .1G′  Now 1G′  is considered on the second iteration and a vertex 

( ) ( )GVGVw =′∈ 1  may explode to arc to all vertices ( )1GVz ′∈  if edge 

( )GEwz ∉  and arc ( )zw,  or ( ) ( )., 1GEwz ′∉  The McPherson number 

of a simple connected graph G is the minimum number of iterative vertex 

explosions say �, to obtain the mixed graph �G′  such that the underlying 
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graph of �G′  denoted ∗
�G  has .nKG �

∗
�  We determine the McPherson 

number for paths, cycles and n-partite graphs. We also determine the 

McPherson number of the finite Jaco Graph ( ),1nJ  .N∈n  It is hoped 

that this paper will encourage further exploratory research. 

1. Introduction 

The concept of the McPherson number of a simple connected graph G on n 

vertices denoted by ( ),Gϒ  is introduced. The recursive concept, called the 

McPherson recursion, is a series of vertex explosions such that on the first iteration a 

vertex ( )GVv ∈  explodes to arc (directed edges) to all vertices ( )GVu ∈  for which 

the edge ( ),GEvu ∉  to obtain the mixed graph .1G′  Now 1G′  is considered on the 

second iteration and a vertex ( ) ( )GVGVw =′∈ 1  may explode to arc to all vertices 

( )1GVz ′∈  if edge ( )GEwz ∉  and arc ( )zw,  or ( ) ( )., 1GEwz ′∉  The McPherson 

number of a simple connected graph G is the minimum number of iterative vertex 

explosions say �, to obtain the mixed graph �G′  such that the underlying graph 

.nKG �
∗
�  Note that .0

∗= GG  

It is easy to see that the total number of arcs created is ( ) ( ).GKn ε−ε  It is 

equally easy to see that ( ) 0=nKϒ  and ( ) ( ) .1=−
∈ nKEuvn uvKϒ  It is not that easy 

to see that the sequence of vertex explosions does not generally obey the 

commutative law. This will be illustrated by way of an example. 

Example 1. Let G be the simple connected graph with ( ) { ,,,, 4321 vvvvGV =  

}65 , vv  and ( ) { }.,,,,,,, 5343625251413121 vvvvvvvvvvvvvvvvGE =  

On the first iteration let vertex 6v  explode to create the arcs ( ),, 16 vv  ( ),, 36 vv  

( ),, 46 vv  ( )., 56 vv  On the second iteration let ( )12 GVv ′∈  explode to create arcs 

( ),, 32 vv  ( )., 42 vv  Finally, let ( )24 GVv ′∈  explode to create arc ( )., 54 vv  After 

validating all permutated sequences of vertex explosions we conclude that, since 

three explosions are the minimum needed to ensure that the underlying graph 

,63 KG �
∗  it follows that ( ) .3=Gϒ  
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However, if vertex ( )GVv ∈1  explodes first, the arc ( )61, vv  is created. If 

second, the vertex ( )13 GVv ′∈  explodes the arcs ( )23 , vv  and ( )63 , vv  are created. 

Followed by the next iteration let ( )22 GVv ′∈  explode to create arc ( )42 , vv  

followed by the explosion of vertex ( )35 GVv ′∈  to create arcs ( ),, 45 vv  ( )., 65 vv  

The final vertex explosion is that of vertex 4v  to create the arc ( )., 64 vv  Now only is 

the underlying graph .65 KG �
∗  Since, minimality is defined we see that the 

sequence of explosions does not generally obey the commutative law.
1
 

2. McPherson Numbers of Jaco Graphs, Paths, Cycles 

and n-Partite Graphs 

Before we consider specialised graphs, we will endeavour to find the optimal 

algorithm to calculate the McPherson number, ( )Gϒ  of a simple connected graph G. 

The McPherson recursion described in Lemma 2.2 below is sufficient. 

Lemma 2.1. The McPherson number of a simple connected graph G on n 

vertices is ( ) ( ) ( ).GKG n ε−ε≤ϒ  

Proof. Consider any complete graph ,nK  .N∈n  Without loss of generality let 

n be even and let ( )....,,,, 1654321 nnn vvvvvvvvKG −−=  Clearly ( ) ( ) =ε−ε GKn  

.
2

n
 For any vertex iv  eligible to explode only one arc, either ( )1, +ii vv  or ( )1, −ii vv  

is added. Hence, exactly 
2

n
 vertex explosions are required to have .2 nn KG �

∗
 

Therefore, ( ) ( ) ( ).
2

GK
n

G n ε−ε==ϒ  For all other simple connected graphs on n 

vertices, ( ) ( ) ( )GKG n ε−ε≤ϒ  since vertex explosions are defined to be greedy and 

on each iteration always arcs to the maximum number of non-adjacent vertices in ∗
iG  

on the ( )1+i th-iteration. ~ 

                                                           
1
Whilst listening to an amasing djembe drumming group from Ghana on Friday, 10 

October 2014, celebrating the 15th anniversary of Klitsgras Drumming Circle, the concept of 

McPherson numbers struck Kokkie’s mind. Thank you to them. It reminds us there are 

mathematics in music and vice versa. 
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Lemma 2.2. The McPherson number of a simple connected graph G on n 

vertices is obtained through the McPherson recursion. Let any vertex with degree 

equal to ( )Gδ  explode on the first iteration. This is followed by letting any vertex in 

the underlying graph ∗
1G  of 1G′  with degree equal to ( )∗δ 1G  explode on the second 

iteration to obtain 2G′  and, so on. If after exactly � vertex explosions the underlying 

graph nKG �
∗
�  then, ( ) .�=Gϒ  

Proof. Consider any simple connected graph G on n vertices. Apply the 

McPherson recursion and assume after exactly � vertex explosions the underlying 

graph .nKG �
∗
�  Label the vertices which exploded consecutively ....,,,, 321 �vvvv  

The total number of edges added in ∗
�G  (total number of arcs added during the ` 

vertex explosions) is given by 

( ) ( ) ( ) ( ) ( ) ( ).
1210

321 �
�

� vdvdvdvdGK
GGGG

n
++++

∗
−

∗∗∗
++++=ε−ε  

Now, assume that for any vertex iv  a vertex ,jv  ( ) ( )iGjG
vdvd

ii
∗
−

∗
−

>
11

 

exploded instead. Then it follows that 

( ) ( ) ( ) ( ) ( )�
�

�� vdvdvdvdvdt
G

j
GGGG i

+++++
∗
−

∗
−

∗∗∗
++++++=

11210
321  

( ) ( ) ( ) ( ) ( )�
�

�� vdvdvdvdvd
G

i
GGGG i

+++++
∗
−

∗
−

∗∗∗
++++++<

11210
321  

( ) ( ).GKn ε−ε=  

It means at least one more vertex explosion is needed to finally add the 

additional ( ) ( )( ) tGKn −ε−ε  arcs required to obtain .nKG �
∗
+�  The latter is a 

contradiction in respect of minimality as defined. Hence the McPherson recursion is 

well-defined and ( ) .�=Gϒ  ~ 

2.1. The McPherson number of Jaco graphs ( ),1nJ  N∈n  

The infinite directed Jaco graph (order 1) was introduced in [3]; and defined by 

( )( ) { },1 N∈|=∞ ivJV i  ( )( ) {( ) }jijivvJE ji <∈|⊆∞ ,,,1 N  and ( ) ( )( )1, ∞∈ JEvv ji  
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if and only if ( ) .2 jvdi i ≥− −  The graph has four fundamental properties which are; 

( )( ) { }N∈|=∞ ivJV i1  and, if jv  is the head of an edge (arc) then the tail is always 

a vertex ,iv  ji <  and, if ,kv  for the smallest N∈k  is a tail vertex, then all 

vertices ,�v  jk << �  are tails of arcs to jv  and finally, the degree of vertex k is 

( ) .kvd k =  The family of finite directed graphs are those limited to N∈n  vertices 

by lobbing off all vertices (and edges arcing to vertices) ,tv  .nt >  Hence, trivially 

we have ( ) ivd i ≤  for .N∈i  

Note that the McPherson recursion can naturally be extended to directed graphs. 

For the Jaco graph ( ),1nJ  ,N∈n  3≥n  it easily follows that if the lowest indiced 

vertex iv  for which the edge nivv  exists is found, then ( )( ) .11 −= iJnϒ  The next 

theorem presents a stepwise closed formula for ( )( ),1nJϒ  ,N∈n  .3≥n  

Theorem 2.3. Consider the Jaco graph ( ),1nJ  ,N∈n  .3≥n  If iv  is the 

prime Jaconian vertex, we have 

( )( )
( )( )







−=

∉=

.,1

,1,

1

otherwisei

JEvvedgetheifi

J
nni

nϒ  

Proof. (a) If the edge nivv  exists the largest complete subgraph of ( )1nJ  is 

given by ( ) ( ) ,1 1+−+ inin Kv �H  [3]. From the definition of a Jaco Graph it follows 

that vertices 1321 ...,,,, −ivvvv  are non-adjacent to at least vertex .nv  So exactly 

1−i  vertex explosions are required to obtain ( ) .1, nin KJ �
∗

−  Hence, 

( )( ) .11 −= iJnϒ  

(b) If the edge ( )( ),1nni JEvv ∉  then the Hope graph [3], is the largest complete 

subgraph of ( ).1nJ  From the definition of a Jaco graph it follows that vertices 

ivvvv ...,,,, 321  are non-adjacent to at least vertex .nv  So exactly i vertex 

explosions are required to obtain ., nin KJ �
∗

 Hence, ( )( ) .1 iJn =ϒ  ~ 

Table 1 shows the ϒ-values for ( ),1nJ  .153 ≤≤ n  The table can easily be 

verified and extended by using the Fisher Algorithm [3]. Note that the Fisher 
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Algorithm determines ( )ivd +  on the assumption that the Jaco Graph is always 

sufficiently large, so at least ( ),1nJ  ( ).ivdin ++≥  For a smaller graph the degree of 

vertex iv  is given by ( ) ( ) ( ) ( ).
1

invdvd iJi
n

−+= −  In [3] Bettina’s theorem describes 

an arguably, closed formula to determine ( ).ivd +  Since ( ) =−
ivd  ( )ivdn +−  it is 

then easy to determine ( ) ( )1nJivd  in a smaller graph ( ),1nJ  ( ).ivdin ++<  

Table 1 

N∈i  ( )ivd −  ( )ivd +  Prime Jaconian vertex, jv  ( )( )1iJϒ  

3 1 2 2v  1 

4 1 3 2v  2 

5 2 3 3v  2 

6 2 4 3v  3 

7 3 4 4v  3 

8 3 5 5v  4 

9 3 6 5v  5 

10 4 6 6v  5 

11 4 7 7v  6 

12 4 8 7v  7 

13 5 8 8v  7 

14 5 9 8v  8 

15 6 9 9v  8 

Conjecture. For a Jaco graph ( ),1nJ  ,N∈n  3≥n  we have that ( )nvd +  is 

unique (non-repetitive) if and only if ( )( )1nJϒ  is unique (non-repetitive). 
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2.2. McPherson number of paths, ,nP  N∈n  

Proposition 2.4. The McPherson number of a path ,nP  3≥n  is given by 

( ) .2−= nPnϒ  

Proof. Consider any path ,nP  N∈n  and label the vertices from left to right, 

....,,,, 321 nvvvv  Clearly, ( ) ( ) ( ).1 nn Pvdvd δ==  So, without loss of generality let 

vertex 1v  explode on the first iteration. The arcs ( ) ( ) ( ) ( )nvvvvvvvv ,...,,,,,,, 1514131  

are added. In the graph 1,nP′  we have that ( ) ( ) ( ).2 1,2
∗δ=== nn Pvdvd  Without 

loss of generality let vertex 2v  explode in the second iteration. Now arcs 

( ) ( ) ( )nvvvvvv ,...,,,,, 25242  are added. Recursively, all vertices ,3v ,4v 25 ...,, −nvv  

must explode to have ( ) .2, nnn KP �
∗

−  

Clearly the number of explosions are a minimum to ensure ( ) nnn KP �
∗

−2,  so 

we have, ( ) .2−= nPnϒ  ~ 

2.3. McPherson number of cycles, ,nC  N∈n  

We begin this subsection with an interesting lemma. 

Lemma 2.5. Consider two simple connected graphs G and H with .HG ≠  If 

after minimum recursive explosions, say t explosions in respect of vertices ( ),GVv ∈  

we have that ,HGt �
∗

 then ( ) ( ) .tHG += ϒϒ  

Proof. Vertex explosions as defined, only add arcs. So the mere fact that after 

the minimum t explosions of t vertices of G we have that HGt �
∗  implies that 

( ) ( ).HG ν=ν  The definition of the McPherson number is well-defined [see Lemma 

2.2], so for all graphs G and H each on n vertices, if ,HG �  then ( ) ( ).HG ϒϒ =  

From the McPherson recursion it follows that ( ) ( ) ( ) .tHtGG t +=+= ∗
ϒϒϒ  ~ 

Proposition 2.6. The McPherson number of a cycle ,nC  4≥n  is given by 

( ) .2−= nCnϒ  



JOHAN KOK and SUSANTH C 

 

98 

Proof. Consider any path nP  and the cycle .nC  Label the vertices of the path 

from left to right, nvvvv ...,,,, 321  and the vertices of the cycle clockwise, 

....,,,, 321 nvvvv  Without loss of generality, let vertex 1v  of both the path and the 

cycle explode on the first interation. It follows that 1,nP′  has amongst others, the arc 

( )nvv ,1  whilst 1,nC′  has amongst others, the edge .1 nvv  So it follows that 

.1,1,
∗∗
nn CP �  

Hence, the result ( ) ( ) ( ) ( )nnnn CCPP ϒϒϒϒ =+=+= ∗∗
11 1,1,  holds true. 

Therefore, ( ) .2−= nCnϒ  ~ 

2.4. McPherson number of n-partite graphs, ( ) N∈∀iinnn nK ,...,,, ,
21 �

 

We recall that the sequence of vertex explosions do not generally obey the 

commutative law. However, n-partite graphs are a class of graphs which does obey 

the commutative law. It follows because the vertices of ( ) N∈∀iinnn nK ,...,,, ,
21 �

 can 

be partitioned in � subsets of pairwise non-adjacent vertices. Although we mainly 

consider simple connected graphs, we will as a special case consider the following 

lemma for the edgeless graph on n vertices which we call the n-Null graph, denoted 

.nℵ  It is important to note that .1- Ktimesnn ∪=ℵ  The importance lies in the fact 

that if we determine the McPherson number of ii G∀∪  the explosion of a vertex 

( )kj GVv ∈  will arc to all vertices ( ),ks GVv ∈  non-adjacent to jv  as well as, arc 

to all vertices ( )mt GVv ∈  for all .km ≠  

Lemma 2.7. For any n-Null graph, N∈n  we have that: 

(a) The vertex explosion sequence obeys the commutative law, 

(b) The McPherson number is given by ( ) .1−=ℵ nnϒ  

Proof. (a) Consider any n-Null graph, .N∈n  Clearly the n vertices can 

randomly be labeled nvvvv ...,,,, 321  in !n  ways. Label these !n  vertex labelled     

n-Null graphs, ( ) ( ) ( ) ( )....,,,, !,3,2,1, nnnnn ℵℵℵℵ  
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Clearly, ( ) ( ) ( ) ( ).!,3,2,1, nnnnn ℵℵℵℵ ���� �  The different random labelling 

represents the random (commutative law) vertex explosions and from Lemma 2.2 it 

follows that 

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ).!,3,2,1, nnnnn ℵ==ℵ=ℵ=ℵ ϒϒϒϒ �  

(b) Consider anyone of the !n  vertex labelled n-Null graphs say, ( )., inℵ  Let 

vertex 1v  explode on the first iteration to add arcs ( ) ( ) ( ).,...,,,,, 13121 nvvvvvv  

Then let vertex 2v  explode on the second iteration to add arcs ( ) ( ) ...,,,,, 4232 vvvv  

( ).,2 nvv  Clearly, on the ith-iteration the arcs ( ) ( ) ( )niiiii vvvvvv ,...,,,,, 21 ++  are 

added. It implies that on the ( )1−n th-iteration the last arc ( )nn vv ,1−  is added, to 

obtain ( ) ( ) .1,, nnin K�
∗

−ℵ  Since the number of vertex explosions are a minimum we 

conclude that ( ( ) ) .1, −=ℵ ninϒ  Following from part (a) we have that ( ) 1−=ℵ nnϒ  

in general. ~ 

Proposition 2.8. For the n-partite graphs, ( ) N∈∀iinnn nK ,...,,, ,
21 �

 we have 

that 

( ( ) ) ∑
=

−=

�

�
�

1

...,,, .
21

i

innn nKϒ  

Proof. In the graph HG �  we restrict the explosion of vertex, ( )GVvi ∈  to 

arc to non-adjacent vertices ( )GVv j ∈  and the arcing of the explosion of vertex 

( )HVui ∈  to non-adjacent vertices ( ).HVu j ∈  Clearly 

( ) ( ) ( ) ( ) ( ).GHHGHG ϒϒϒϒϒ +=+=�  

Now, label the 1n  vertices, ,...,,,,
1,13,12,11,1 nvvvv  and label the 2n  vertices, 

2,23,22,21,2 ...,,,, nvvvv  and so on, and finally label the �n  vertices, 

....,,,, ,3,2,1, ����� vvvv  In the n-partite graph, we have that the edge mkji vv ,,  

exists for ,,1 �≤≤ ji  ,1 inj ≤≤  knm ≤≤1  and .ji ≠  It implies that 

( ( ) ) ( ).
32121 ...,,, ��
� nnnnnnnK ℵℵℵℵ= ����ϒϒ  
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Now, we have that 

( ) ( ) ( ) ( ) ( )
��

�� nnnnnnnn ℵ++ℵ+ℵ+ℵ=ℵℵℵℵ ϒϒϒϒϒ
321321

����  

( ) ( ) ( ) ( )1111 321 −++−+−+−= �� nnnn  

∑
=

−=

�

�

1

.

i

in  ~ 

We note from the proof above that the McPherson recursion could be relax in 

the sense that it applies to each iℵ  but not to ( ) N∈∀iinnn nK ,...,,, ,
21 �

 as a singular 

graph. The commutativity of the � operation allows for the relaxation. It makes the 

following generalisation possible. 

Corollary 2.9. Consider the simple connected graphs nGGGG ...,,,, 321  and 

define the Gn -partite graph to be the graph 
GnG  obtained by adding all the edges 

vu, if and only if ( )iGVv ∈  and ,jGu ∈  ji ≠  to .ii G∀∪  We have that 

( ) ( )∑
∀

=

i

in GG
G

.ϒϒ  

Proof. Similar to the proof of Proposition 2.8. ~ 

[Open problem: In the graph HG �  we restrict the explosion of vertex 

( )GVvi ∈  to arc to non-adjacent vertices ( )GVv j ∈  and the arcing of the 

explosion of vertex ( )HVui ∈  to non-adjacent vertices ( ).HVu j ∈  Clearly 

( ) ( ) ( ) ( ) ( ).GHHGHG ϒϒϒϒϒ +=+=�  

This law is called the �-commutative law of McPherson numbers. It is easy to see 

that the �-associative law of McPherson numbers namely, 

( ) ( ) ( )MHGMHG ϒϒϒ += ���  

( ) ( )MHG �ϒϒ +=  

( ) ( )HMG ϒϒ += �  

is valid as well. 
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Alternatively stated, 

( ) ( ) ( )( ) ( )MHGMHG ϒϒϒϒ ++=��  

( ) ( ) ( )( )MHG ϒϒϒ ++=  

( ) ( )( ) ( ).HMG ϒϒϒ ++=  

If both graphs G and H are graphs on n vertices, we note that 

( ) ( ) ( ) ( ) ( ) ( )GGGKGKG nn ϒϒϒϒϒϒ +==+=+= 00�  

( ) ( ) ( ).GKGK nn �ϒϒϒ =+=  

If possible, describe the algebraic structure.] 

[Open problem. If possible, prove that for a Jaco graph ( ),1nJ  ,N∈n  3≥n  

we have that ( )nvd +  is unique (non-repetitive) if and only if ( )( )1nJϒ  is unique 

(non-repetitive).] 

[Open problem. Define the McPherson graph to be the directed subgraph of 

( )GGϒ′  which was obtained through vertex explosions. Characterise the McPherson 

graph in general if possible, or for some specialised graphs.] 

[Open problem. Prove the conjecture that if graph G on n vertices has 

( ) ( ),ji vdvd =  ,ji ≠  for all vertices of G, it is always possible to add a vertex 

1+nv  with edges such that 1++ nvG  has the same graph theoretical structural 

properties.] 

[Open problem. Example 1 showed that the graph G has ( ) .3=Gϒ  The 

maximum number of vertex explosions to obtain 65 KG �
∗  was given by 

( ) .5=∗ Gϒ  The McPherson discrepancy is defined to be ( ) ( ) ( ).GGGd ϒϒϒ −= ∗  

If ( ) 0=Gdϒ  the graph G is said to be McPherson stable. It easily follows that ,nK  

4C  are McPherson stable whilst ,nP  4≥n  is not. The maximum number of vertex 

explosions can be determine by applying the inverse McPherson recursion. The 

maximum McPherson number of a simple connected graph G on n vertices is 

obtained through the inverse McPherson recursion. Let any vertex with maximum 
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degree ( ) 2−≤ nvd  explode on the first iteration. This is followed by letting any 

vertex in the underlying graph ∗
1G  of 1G′  with maximum degree ( ) 2−≤ nud  

explode on the second iteration to obtain 2G′  and, so on. If after exactly ∗
�  vertex 

explosions the underlying graph ,nKG �
∗
∗
�

 then ( ) .∗∗ = �Gϒ  Characterise 

McPherson stable graphs.] 

[Open problem. Platonic graphs are the graphs whose vertices and edges are the 

vertices and edges of platonic solids such as the tetrahedron, the octahedron, the 

cube, the icosahedron, the dodecahedron and alike, See [2]. Determine the 

McPherson number for platonic graphs.] 
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